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Abstract

Let (A,∆) be a locally compact quantum group and (A0,∆0) a regular multiplier Hopf
algebra. We show that if (A0,∆0) can be imbedded in (A,∆), then A0 will inherit some of
the analytic structure of A. Under certain conditions on the imbedding, we will be able to
conclude that (A0,∆0) is actually an algebraic quantum group with a full analytic structure.
The techniques used to show this can also be applied to obtain the analytic structure of
a ∗-algebraic quantum group in a purely algebraic fashion. Moreover, the reason that this
analytic structure exists at all, is that the associated one-parameter groups, such as the
modular group and the scaling group, are diagonizable. As an immediate corollary, we will
show that the scaling constant µ of a ∗-algebraic quantum group equals 1. This solves an
open problem posed in [13].

Introduction

In [20], the second author introduced multiplier Hopf algebras, generalizing the notion of a
Hopf algebra to the case where the underlying algebra is not necessarily unital. In [21], he
considered those multiplier Hopf algebras that have a non-zero left invariant functional. It
turned out that these objects, termed algebraic quantum groups, possess a rich structure,
allowing for example a duality theory. These objects seemed to form an algebraic model of
locally compact quantum groups, which at the time had no generally accepted definition.

In [13], Kustermans showed that a ∗-algebraic quantum group (which is an algebraic quan-
tum group with a well-behaving ∗-structure) naturally gives rise to a C∗-algebraic quantum
group, which was a proposed definition for a locally compact quantum group by Masuda,
Nakagami and Woronowicz ([16]). Kustermans showed however that there was one discrep-
ancy with the proposed definition, in that the invariance of the scaling group with respect
to the left Haar weight was only relative.

These investigations culminated in the by now acknowledged definition of a locally compact
quantum group by Kustermans and Vaes, as laid down in [11]. This definition was (up to the
relative invariance of the scaling group) equivalent with the one proposed by Woronowicz,
Masuda and Nakagami, but the set of axioms was smaller and simpler. These axioms were
very much inspired by those of ∗-algebraic quantum groups, but introducing analysis made it
much harder to show that they were sufficiently powerful to carry a theory of locally compact
quantum groups with the desired properties.

In this article, we examine a converse of the problem studied in [13] and [9]. Namely, in-
stead of starting with a ∗-algebraic quantum group and imbedding it into a locally compact
quantum group, we start with an imbedding of a general regular multiplier Hopf algebra in a
locally compact quantum group, and look whether the multiplier Hopf algebra inherits some
structural properties.
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The study of this problem led us to an enhanced structure theory for ∗-algebraic quantum
groups. For example, the analytic structure of these objects is a consequence of the fact that
all the actions at hand are diagonizable. This has as a nice corollary that the scaling constant
of a ∗-algebraic quantum group is necessarily 1. It is odd that ∗-algebraic quantum groups,
which provided a motivation for allowing relative invariance of the scaling group under the
Haar weight, turn out to have proper invariance after all.

The paper is organized as follows. In the first part, we introduce the definitions of the ob-
jects at play and introduce notations. We will not always use the definitions as given in the
fundamental papers, but use equivalent ones which are better suited for our purposes.

In the second part we investigate the following problem: if a multiplier Hopf algebra A0 can
be imbedded in a locally compact quantum group, does this give us information about the
multiplier Hopf algebra? Firstly, we must specify what we mean by ‘imbedded in’: A0 has
to be a subalgebra of the locally compact quantum group, and the respective comultiplica-
tions ∆0 and ∆ have to satisfy formulas of the form ∆0(a)(1 ⊗ b) = ∆(a)(1 ⊗ b) for a, b
in A0. Secondly, we must specify whether we imbed A0 in the von Neumann algebra M
or in the C∗-algebra A associated to the locally compact quantum group. Already in the
first situation, the objects of A0 will behave nicely with respect to analyticity of the various
one-parameter groups. But only in the second case can we conclude, under a mild extra
condition, that A0 is invariant under these one-parameter groups. Moreover, A0 will then
automatically have the structure of an algebraic quantum group.

In the third part we apply the techniques of the previous section to obtain structural prop-
erties of ∗-algebraic quantum groups. We want to stress that this section is entirely of an
algebraic nature. For example, we prove in a purely algebraic fashion the existence of a pos-
itive right invariant functional on the ∗-algebraic quantum group. Up to now, some involved
analysis was necessary to arrive at this.

In the fourth part we consider some special cases. We also look at a concrete example,
namely the discrete quantum group Uq(su(2)).

Some of the motivation for this paper comes from [14], where similar questions are inves-
tigated in the commutative and co-commutative case. For example, it is shown that the
function space C0(G) of a locally compact group contains a dense multiplier Hopf ∗-algebra,
if and only if G contains a compact open subgroup. The multiplier Hopf ∗-algebra will be
the space spanned by translates of regular (=polynomial) functions on this compact group.

1 Preliminaries

In this article, we use the concepts of a regular multiplier Hopf
(∗-)algebra, a (∗-)algebraic quantum group, a (reduced) C∗-algebraic quantum group and
a von Neumann-algebraic quantum group, as introduced respectively in [20], [21], [11] and
[12] (see also [24]). Since these objects stem from quite different backgrounds, we will give
an overview of their definitions and properties. As mentioned in the introduction, we take
those forms of the definitions which are most suited for our purpose.

Regular multiplier Hopf ( ∗-)algebras

We recall the notion of the multiplier algebra of an algebra. Let A be a non-degenerate
algebra (over the field C), with or without a unit. The non-degeneracy condition means that
if ab = 0 for all b ∈ A, or ba = 0 for all b ∈ A, then a = 0. As a set, the multiplier algebra
M(A) of A consists of couples (λ, ρ), where λ and ρ are linear maps A → A obeying the
following law:

aλ(b) = ρ(a)b, for all a, b ∈ A.
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In practice we write m for (λ, ρ), and denote λ(a) by m · a or ma, and ρ(a) by a ·m or am.
Then the above law becomes an associativity condition. Now M(A) is an algebra, called the
multiplier algebra of A, by the composition (λ, ρ) · (λ′, ρ′) = (λ ◦ λ′, ρ′ ◦ ρ). Moreover, if A
is a ∗-algebra, M(A) also carries a ∗-operation: for m ∈ M(A) and a ∈ A, we define m∗ by
m∗ · a = (a∗ ·m)∗ and a ·m∗ = (m · a∗)∗. Note that when A is a C∗-algebra, this definition
coincides with the usual definition of the multiplier algebra.

There is a natural map A → M(A), letting an element a correspond with left and right
multiplication by it. Because of non-degeneracy, this (∗-)algebra morphism will be injective.
In this way non-degeneracy compensates the possible lack of a unit. Note that, when A is
unital, M(A) is equal to A.

Let B be another non-degenerate (∗-)algebra. In our paper, a morphism between A and B is
a non-degenerate (∗-)algebra homomorphism f : A→M(B). The non-degeneracy of a map
f means that f(A)B = B and Bf(A) = B, where f(A)B = {

∑n
i=1 f(ai)bi | ai ∈ A, bi ∈ B}

(and likewise for Bf(A)). If f is a morphism from A to B, then f can be extended to a
unital (∗-)algebra morphism from M(A) to M(B). A proper morphism between A and B is
a morphism f such that f(A) ⊆ B. Note that when A and B are C∗-algebras, a ∗-algebra
homomorphism f : A → M(B) will be non-degenerate in this sense iff it is non-degenerate
in the ordinary sense (i.e. f(A)B and Bf(A) dense in B). This follows for example by an
application of the Cohen-Hewitt factorization theorem (see e.g. Theorem A.1. of [16]).

We can now state the definition of a regular multiplier Hopf (∗-)algebra ([20]). It is the
appropriate generalization of a Hopf (∗-)algebra to the case where the underlying algebra
need not be unital. A regular multiplier Hopf ( ∗-)algebra consists of a couple (A,∆), with A
a non-degenerate (∗-)algebra, and ∆, the comultiplication, a morphism (in the above sense)
from A to A ⊗ A, where ⊗ denotes the algebraic tensor product. Moreover, (A,∆) has to
satisfy the following conditions:

M.1 (∆⊗ ι)∆ = (ι⊗∆)∆ (coassociativity).

M.2 The maps

T∆2 : A⊗A→M(A⊗A) : a⊗ b→ ∆(a)(1⊗ b),
T1∆ : A⊗A→M(A⊗A) : a⊗ b→ (a⊗ 1)∆(b),

T∆1 : A⊗A→M(A⊗A) : a⊗ b→ ∆(a)(b⊗ 1),

T2∆ : A⊗A→M(A⊗A) : a⊗ b→ (1⊗ a)∆(b)

all induce linear bijections A⊗A→ A⊗A.

Here, and elsewhere in the text, we will use ι to denote the identity map. Remark that we
use the regularity of the maps (∆⊗ ι) and (ι⊗∆) to make sense of M.1.

The T -maps can be used to define a co-unit ε : A → C and an antipode S : A → A,
determined by the formulas

(ε⊗ ι)(∆(a)(1⊗ b)) = ab,

S(a)b = (ε⊗ ι)(T−1
∆2 (a⊗ b)),

with a, b ∈ A. The co-unit will be a (∗)-morphism, while S will be a bijective proper anti-
morphism A → A, satisfying S(S(a)∗)∗ = a for all a ∈ A when A is a multiplier Hopf
∗-algebra.

We will need an identity concerning the antipode (cf. Lemma 5.5. of [20]): if a, b in A satisfy
a⊗b =

∑n
i=1(pi⊗1)∆(qi) for certain pi, qi ∈ A, then (∆(a)(1⊗S(b)) =

∑
∆(pi)(qi⊗1). We

can give a quick motivation for this result if we look at the special case where A is a Hopf
algebra: using Sweedler notation ∆(x) = x(1)⊗x(2), we have that if a⊗b =

∑n
i=1 piqi(1)⊗qi(2),
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then

∆(a)(1⊗ S(b)) = a(1) ⊗ a(2)S(b)

=
∑

(piqi(1))(1) ⊗ (piqi(1))(2)S(qi(2))

=
∑

pi(1)qi(1) ⊗ pi(2)qi(2)S(qi(3))

=
∑

pi(1)qi ⊗ pi(2)

=
∑

∆(pi)(qi ⊗ 1).

It is also interesting to note that if A carries a multiplier Hopf algebra structure, it must
necessarily satisfy some nice algebraic properties. Namely, there will exist local units in the
following sense: for any finite collection of elements ai ∈ A, there will exist elements e, f in
A such that eai = ai and aif = ai, for all i (see [4]).

( ∗-)Algebraic quantum groups

Our second object forms an intermediate step between the former, purely algebraic notion
of a regular multiplier Hopf algebra, and the analytic set-up of a locally compact quantum
group. An algebraic quantum group ([21]) is a regular multiplier Hopf algebra (A,∆) for
which there exists a non-zero left invariant functional ϕ. This means that ϕ satisfies

(ι⊗ ϕ) ◦∆ = ϕ.

This should be interpreted as follows: the left hand side makes sense as a map A→ M(A),
by sending a ∈ A to the multiplier m = (ι⊗ϕ)∆(a), determined by mb = (ι⊗ϕ)(∆(a)(b⊗1))
and bm = (ι ⊗ ϕ)((b ⊗ 1)∆(a)) for b ∈ A. Also the right hand side can be seen as a map
A → M(A), namely the map sending a ∈ A to ϕ(a)1. Then the assumption is that in fact
both these maps are the same.

A ∗-algebraic quantum group is a multiplier Hopf ∗-algebra for which there exists a positive
non-zero left invariant functional ϕ, i.e. ϕ(a∗a) ≥ 0 for all a ∈ A. This extra condition is in
fact very restrictive, as we shall see.

We can prove that a non-zero left invariant functional ϕ is unique up to multiplication with
a scalar. It will be faithful in the following sense: if ϕ(ab) = 0 for all b ∈ A, or ϕ(ba) = 0 for
all b ∈ A, then a = 0. Then (A,∆) will also have a non-zero functional ψ, again unique up
to a scalar, such that

(ψ ⊗ ι) ◦∆ = ψ.

If A is a ∗-algebraic quantum group, we can still choose ψ to be positive. We note however,
that to arrive at this functional, a detour into an analytic landscape (with aid of the GNS-
device for ϕ) seemed inevitable. The problem is of course that the evident right invariant
functional ψ = ϕ◦S is not necessarily positive. To create the right ψ, there was some analytic
machinery needed , namely the square root of the modular element, or a polar decomposition
of the antipode (see [13]). In this paper we show that it is possible to arrive at the positivity
of the right invariant functional by purely algebraic means (see the remark after Theorem
3.5). This means that also ∗-algebraic quantum groups are appropriate objects of study for
algebraists with a fear of analysis.

Algebraic quantum groups have some nice features. For example, there exists a unique
automorphism σ of the algebra A, satisfying ϕ(ab) = ϕ(bσ(a)) for all a, b ∈ A. We call it the
modular automorphism, a notion we borrow from the theory of weights on von Neumann-
algebras. Note that in pure algebra, σ is rather called the Nakayama automorphism of ϕ.
There also exists a unique multiplier δ ∈M(A) such that

(ϕ⊗ ι)(∆(a)(1⊗ b)) = ϕ(a)δb,
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(ϕ⊗ ι)((1⊗ b)∆(a)) = ϕ(a)bδ,

for all a, b ∈ A. It is called the modular element, as it is the non-commutative analogue of the
modular function in the theory of locally compact groups. When A is a ∗-algebraic quantum
group, δ will indeed be a positive element (i.e. δ = q∗q for some q ∈M(A)).

There also is a particular number that can be associated with an algebraic quantum group.
Since ϕ◦S2 is a left Haar functional, the uniqueness of ϕ implies that there exists µ ∈ C such
that ϕ(S2(a)) = µϕ(a), for all a ∈ C. This number µ is called the scaling constant of (A,∆).
In an early stage, examples of algebraic quantum groups were found where µ 6= 1 (see [21]).
However, it remained an open question whether ∗-algebraic quantum groups existed with
µ 6= 1. We will show in this paper that in fact µ = 1 for all ∗-algebraic quantum groups (see
Theorem 3.4).

To any algebraic quantum group (A,∆), one can associate another algebraic quantum group
(Â, ∆̂) which is called its dual. As a set it consists of functionals on A of the form ϕ( · a) with
a ∈ A, where ϕ is the left invariant functional on A. Its multiplication and comultiplication
are dual to respectively the comultiplication and multiplication on A. Intuitively, this means
that

∆̂(ω1)(a⊗ b) = ω1(ab),

(ω1 · ω2)(a) = (ω1 ⊗ ω2)(∆(a)),

for a, b ∈ A and ω1, ω2 ∈ Â, but some care is needed in giving sense to these formulas.

The counit on Â is defined by evaluation in 1, while the antipode is the dual of the antipode
of A: if Ŝ denotes the antipode of Â, then

Ŝ(ω1)(a) = ω1(S(a)),

for ω1 ∈ Â and a ∈ A. The left integral ϕ̂ of Â is determined by ϕ̂(ψ(a · )) = ε(a).

If A is a ∗-algebraic quantum group, then also Â will be ∗-algebraic, with ϕ̂ as a positive left
invariant functional. The ∗-structure on Â is given by ϕ(·a)∗ = ψ(·S(a)∗), where ψ = ϕ ◦ S.
It will follow from the results in the third section that then also ϕ(·a)∗ = ϕ(·S(a)∗δ).

Von Neumann-algebraic quantum groups

We now enter the analytic arena, and pose the definition of a von Neumann-algebraic quan-
tum group ([12], [24]). A von Neumann-algebraic quantum group consists of a quadruple
(M,∆, ϕ, ψ) (which we mostly denote by just (M,∆)), with M a von Neumann-algebra, ∆
a normal *-homomorphism from M to M ⊗M which satisfies the coassociativity condition

(∆⊗ ι)∆ = (ι⊗∆)∆,

and ϕ and ψ normal, semi-finite faithful (nsf) weights which satisfy

(ι⊗ ϕ) ◦∆ = ϕ,

(ψ ⊗ ι) ◦∆ = ψ.

Here ⊗ denotes the ordinary von Neumann-algebraic tensor product, and then the maps
(∆⊗ ι) and (ι⊗∆) are well-defined maps from M ⊗M to M ⊗M ⊗M . The identities con-
cerning the weights should be interpreted as follows: for any ω ∈M+

∗ , the weight ψ◦(ι⊗ω)∆
should equal the weight ω(1)ψ, and similarly for ϕ. Note that these are the strong forms
of invariance, and that they in fact follow from weaker ones (see Proposition 3.1. of [12]).
It can be shown that also here the weights ϕ and ψ are unique up to multiplication with a
positive scalar.

The most important objects associated with (M,∆) are the multiplicative unitaries, which
essentially carry all information about (M,∆). To introduce them, we first recall the notion
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of the GNS-representation associated to the nsf weight ψ. Denote by Nψ the left ideal
{x ∈ M | ψ(x∗x) < ∞} of square-integrable elements. The GNS-space associated to ψ is
the closure Hψ of the pre-Hilbert space Nψ, with scalar product defined by 〈a, b〉 = ψ(b∗a)
for a, b ∈ Nψ. The injection of Nψ into Hψ will be denoted by Λψ. We can construct a
faithful normal representation of M on Hψ via left multiplication. We can do the same for
ϕ, obtaining a Hilbert space Hϕ and an injection Λϕ : Nϕ → Hϕ. Moreover, there exists a
unitary from Hψ to Hϕ, intertwining the representations of M . We will identify both Hilbert
spaces by this unitary and denote it simply as H . We will let elements of M act directly
on H as operators (suppressing the representation). Now we can define the multiplicative
unitary W , also called the left regular representation: it is the unitary operator on H ⊗H ,
characterized by

(ω ⊗ ι)(W ∗)Λϕ(x) = Λϕ((ω ⊗ ι)∆(x)), x ∈ Nϕ and ω ∈ B(H )∗.

We want to remark that it is not too difficult to show that the W ∗ defined by this equa-
tion is an isometry, but that proving surjectivity of W ∗ requires some subtle but beautiful
arguments. The unitary W will implement the comultiplication as follows:

∆(x) = W ∗(1⊗ x)W for all x ∈M.

Moreover, the σ-weak closure of the set {(ι⊗ ω)(W ) | ω ∈ B(H )∗} will be equal to M .

We can also define the multiplicative unitary V , called the right regular representation: it is
the unitary operator on H ⊗H , determined by

(ι⊗ ω)(V )Λψ(x) = Λψ((ι⊗ ω)∆(x)), x ∈ Nψ and ω ∈ B(H )∗.

It also implements the comultiplication:

∆(x) = V (x⊗ 1)V ∗ for all x ∈M.

Again, the σ-weak closure of the set {(ω ⊗ ι)(V ) | ω ∈ B(H )∗} will be equal to M .

The regular representations can be used to define the antipode S on (M,∆). It is the (possibly
unbounded) σ-weakly closed linear map S from M to M , with a core consisting of elements
of the form (ω ⊗ ι)(V ), ω ∈ B(H )∗, such that

S((ω ⊗ ι)(V )) = (ω ⊗ ι)(V ∗).

Then also (ι⊗ ω)(W ) ∈ D(S) for all ω ∈ B(H )∗, and

S((ι⊗ ω)(W )) = (ι⊗ ω)(W ∗).

This map S has a polar decomposition, consisting of a (point-wise) σ-weakly continuous
one-parameter group (τt) of automorphisms of M (called the scaling group) and a ∗-anti-
automorphism R of M (called the unitary antipode). Then the antipode equals the map
R ◦ τ−i/2, where τ−i/2 is the analytic continuation of (τt) to the point −i/2. We recall here
that for z ∈ C, τz is the (possibly unbounded) map M →M which has as its domain the el-
ements x ∈M such that for any ω ∈M∗ the function fxω : t→ ω(τt(x)) can be extended to a
bounded continuous function on the closed strip {w ∈ C | Im(w) lies between 0 and Im(z)},
analytic in the interior of this strip, and that then τz(x) is the element of M determined
by the functional ω → fxω(z) on M∗. An element x is called analytic for (τt) if it is in the
domain of all τz.

Now by non-commutative integration theory (see e.g. [17]), we can associate to ϕ and ψ two
other σ-weakly continuous one-parameter groups of automorphisms, denoted respectively by
(σt) and (σ′t). They are called the modular one-parameter groups (associated with ϕ and
ψ). Then (σt), (σ

′
t) and (τt) will all commute with each other. It can also be shown that

there exists a (possibly unbounded) non-singular positive operator δ affiliated with M , called
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the modular element of (M,∆), such that σ′t(x) = δitσt(x)δ−it for x ∈ M . As we shall see
further on, δit is in fact a cocycle for (σt), and hence ψ will be a cocycle perturbation of ϕ
by δ. We can denote this intuitively as ψ = ϕ(δ1/2 · δ1/2). This δ will be invariant under
the scaling group (τt) and satisfy R(δ) = δ−1. In the sequel, we will also frequently use the
commutation rules between these objects and ∆: we have ∆(δit) = δit ⊗ δit, and further

∆τt = (τt ⊗ τt)∆ ∆σt = (τt ⊗ σt)∆
∆τt = (σt ⊗ σ′−t)∆ ∆σ′t = (σ′t ⊗ τ−t)∆.

Now just as for algebraic quantum groups, we can associate a certain number to (M,∆).
Namely, there exists ν ∈ R+ such that σt(δ) = νtδ. This constant ν is called the scaling
constant. It was an important question whether there exist locally compact quantum groups
where this constant is not trivially 1. Such quantum groups do indeed exist: an interesting
example is the quantum az + b-group (see [23]).

With the aid of a multiplicative unitary, it is also possible to construct a dual von Neumann-
algebraic quantum group (M̂, ∆̂). Namely, it can be shown that the σ-weak closure of the
second leg of W , by which we mean the set {(ω ⊗ ι)(W ) | ω ∈ B(H )}, is a von Neumann
algebra M̂ . It has a natural comultiplication by defining ∆̂(x) = ΣW (x⊗1)W ∗Σ for x ∈ M̂ ,
where Σ denotes the flip map (taking ξ ⊗ η to η ⊗ ξ). Also a left and right invariant snf
weight can be constructed on M̂ . For example, the left invariant snf weight ϕ̂ is determined
by the following: if a ∈ Nϕ happens to be such that ϕ(·a) is bounded on N ∗

ϕ , then denoting
its closure by ωa and (ωa ⊗ ι)(W ) by â, we have that â ∈ Nϕ̂ and ϕ̂(â∗â) = ϕ(a∗a). In
particular, we can again make our GNS-construction for ϕ̂ in the old Hilbert space H , by
identifying Λϕ̂(â) with Λϕ(a). Then the left regular representation of M̂ has Ŵ = ΣW ∗Σ as
its multiplicative unitary.

Note that we have essentially shown already that W ∈ M ⊗ M̂ . It can also be shown that
V ∈ M̂ ′ ⊗M , where M̂ ′ is the commutant of M̂ on H .

C∗-algebraic quantum groups

A (reduced) C∗-algebraic quantum group is the non-commutative version of the space of
continuous complex functions vanishing at infinity of a locally compact group. While its
theory can be developed by itself (with axioms resembling those of a von Neumann-algebraic
quantum group), we will only need to know how to obtain a C∗-algebraic quantum group
from a von Neumann algebraic quantum group. This is no restriction, as every (reduced)
C∗-algebraic quantum group turns out to be of this form.

So assume a von Neumann algebraic quantum group (M,∆) is given, and let V denote
the multiplicative unitary pertaining to the right regular representation. Then the norm-
closure of the space {(ω ⊗ ι)(V ) | ω ∈ B(H )} will equal the normclosure of the space
{(ι ⊗ ω)(W ∗) | ω ∈ B(H )}, and this can be shown to be a C∗-algebra A. The comultipli-
cation ∆ will restrict to a morphism A → A ⊗ A (in the previously defined sense), where
⊗ denotes the minimal tensor product. Furthermore, all the one-parametergroups (τt), (σt)
and (σ′t) will now restrict to (point-wise) norm-continuous one-parametergroups of automor-
phisms on A.

Our last remark concerns the invariant weights. Namely, it can be shown that if M +
ϕ = {x ∈

M | ϕ(x∗x) <∞} denotes the cone of positive ϕ-integrable elements, then A∩M +
ϕ will still

be norm-dense in A+, so that in fact ϕ can also be seen as a semi-finite weight on A. The
same applies for ψ.
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2 Multiplier Hopf algebras imbedded in locally compact
quantum groups

In this section, we fix a von Neumann-algebraic quantum group (M,∆) and a regular multi-
plier Hopf algebra (A0,∆0). The C∗-algebraic quantum group associated to (M,∆) will be
denoted by (A,∆). We will use notations as before, but the structural maps for A0 will be
indexed by 0 (whenever this causes no confusion). We also fix a left invariant snf weight ϕ
on (M,∆). We can scale a right invariant snf weight ψ on (M,∆) so that ψ = ϕ ◦ R, with
R the unitary antipode. We use the notation Nϕ for the square integrable elements in M ,
and Mϕ = N ∗

ϕ Nϕ for the algebra of integrable elements.

Assumption: A0 ⊆M .

This means that A0 is a subalgebra of M , not necessarily invariant under the ∗-involution.
We also want to impose a certain compatibility between ∆ and ∆0, but we have to be careful:
M(A0) bears no natural relation to M . For example, denoting by j the inclusion of A0 in
M , the identity (j ⊗ j) ◦∆0 = ∆ ◦ j can be meaningless if j has no well-defined extension
M(A0)→M . We will therefore assume the following: for all a, b ∈ A0,

∆0(a)(1⊗ b) = ∆(a)(1⊗ b),

(a⊗ 1)∆0(b) = (a⊗ 1)∆(b),

∆0(a)(b⊗ 1) = ∆(a)(b⊗ 1),

(1⊗ a)∆0(b) = (1⊗ a)∆(b).

Remarks: This condition is strictly weaker than the condition (j ⊗ j) ◦ ∆0 = ∆ ◦ j, when
it makes sense. For example, the imbedding of C(Z) in C(Z) sending δn to δ2n satisfies the
former, but not the latter condition. Moreover, it is possible that the unit 1 of M is not in
the σ-weak closure of A0. In fact, it is not difficult to see that if A0 is a multiplier Hopf
∗-algebra (with the same ∗-operation as M), then the projection p ∈M ∩N which gives the
unit of the σ-weak closure N of A0 will be a grouplike projection: ∆(p)(1⊗ p) = p⊗ p (see
e.g. [15], and the first part of the fourth section). Also in this case, the third and fourth
equality will follow from the first two by applying the ∗-involution. We have not investigated
in detail the interdependence of the stated equalities in the general case.

Our first result shows that the antipode S of M restricts to the antipode S0 of A0. The
hard part consists of showing that A0 lies in the domain of S. We will need a lemma which
is interesting in its own right. It is a kind of cancelation property involving M and M̂ ′, the
commutant of the dual quantum group M̂ .

Lemma 2.1. Suppose a ∈M and x ∈ M̂ ′ satisfy ax = 0. Then a = 0 or x = 0.

Proof. Let W be the left regular representation for M . We recall that W ∈ M ⊗ M̂ . So if
ax = 0, then

W ∗(1⊗ ax)W = W ∗(1⊗ a)W (1⊗ x)

= ∆(a)(1⊗ x)

= 0.

Assume x 6= 0. Choose ω ∈ B(H )∗,+ such that ω(x∗x) = 1. Then from the foregoing we
obtain (ι⊗ ω(x∗ · x))∆(a∗a) = 0. Applying ψ and using the strong form of right invariance,
we get ψ(a∗a)ω(x∗x) = ψ(a∗a) = 0. Since ψ is faithful, a must be zero.

Remark: By a similar argument, also the following is true: if a ∈M and x ∈ M̂ , then ax = 0
implies either a = 0 or x = 0.

We can show now that the antipodes of M and A0 coincide.
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Proposition 2.2. A0 lies in the domain of S, and S|A0
will be the antipode of (A0,∆0).

Proof. Let b be an element of A0. We will show that b ∈ D(S) and S(b) = S0(b). We start
by choosing some fixed a in A0. We can pick pi, qi in A0 such that

a⊗ b =

n∑
i=1

(pi ⊗ 1)∆(qi).

Then we know that this is equivalent with

∆(a)(1⊗ S0(b)) =

n∑
i=1

∆(pi)(qi ⊗ 1).

Let y be (ωΛψ(d),Λψ(c)(a·)⊗ι)(V ) = (ψ⊗ι)((c∗a⊗1)∆(d)), where c, d ∈ Nψ and ωΛψ(d),Λψ(c) =
〈·Λψ(d),Λψ(c)〉. Then

by = (ψ ⊗ ι)((c∗a⊗ b)∆(d))

= (ψ ⊗ ι)
∑

(c∗pi ⊗ 1)∆(qid).

We know that this last expression is in D(S) and that

S((ψ ⊗ ι)
∑

(c∗pi ⊗ 1)∆(qid)) = (ψ ⊗ ι)
∑

∆(c∗pi)(qid⊗ 1).

So

S(by) = (ψ ⊗ ι)
∑

∆(c∗pi)(qid⊗ 1)

= (ψ ⊗ ι)(∆(c∗a)(d⊗ S0(b)))

= S(y)S0(b).

Denote by C the linear span of all such y, with c and d varying. We show that C is a σ-weak
core for S. First remark that functionals of the form ωΛψ(d),Λψ(c)(a·) have a norm-dense

linear span in (M̂ ′)∗. Indeed: if z ∈ M̂ ′ is such that 〈azΛψ(d),Λψ(c)〉 = 0 for all c, d ∈ Nψ,

then az = 0, hence z = 0 by the previous lemma. Then, since V ∈ M̂ ′ ⊗M , there exists for
every ω ∈ B(H )∗ and every ε > 0 a finite number of cn, dn ∈ Nψ such that

‖
∑
n

(ωΛψ(dn),Λψ(cn)(a·)⊗ ι)(V )− (ω ⊗ ι)(V )‖ < ε,

‖
∑
n

(ωΛψ(dn),Λψ(cn)(a·)⊗ ι)(V ∗)− (ω ⊗ ι)(V ∗)‖ < ε.

Since {(ω ⊗ ι)(V ) | ω ∈ B(H )∗} is a σ-weak core for S, the same will be true for C.

By choosing a net yα in C such that yα → 1 and S(yα)→ 1 in the σ-weak topology, we can
conclude that b ∈ D(S) and S(b) = S0(b), by the closedness of S for the σ-weak topology.

The previous proposition implies that A0 ⊆ D(τz) for every z in C, i.e. every a ∈ A0 is ana-
lytic with respect to (τt). Indeed: a ∈ D(S) means that a ∈ D(τ−i/2). Since S(S−1

0 (a)) = a
for a ∈ A0, we also have that a ∈ D(S−1) = D(τi/2). So A0 ⊆ D(τni) for every integer n ∈ Z.

This again illustrates the lack of analytic structure of a general algebraic quantum group: if
its antipode S satisfies S2n = ι, but S2 6= ι, then it can not be imbedded in a locally compact
quantum group. Such algebraic quantum groups do indeed exist (see e.g. [21]).
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We can also use Lemma 2.1 to prove that actually A0 ⊆M(A). Fix a ∈ A0. Choose b ∈ A0

and ω ∈ B(H )∗. Then

a⊗ b =
∑

(qi ⊗ 1)∆(pi)

=
∑

(qi ⊗ 1)V (pi ⊗ 1)V ∗,

for some pi, qi in A0. Multiplying from the right with V and applying ω ⊗ ι, we get
b(ω(a·) ⊗ ι)(V ) ∈ A. But as we have shown, the set {(ω(a·) ⊗ ι)(V ) | ω ∈ B(H )∗} is
norm-dense in A. Hence bA ⊆ A. Similarly Ab ⊆ A, and thus A0 ⊆M(A).

As a second result, we show that A0 consists of analytic elements for (σt). This follows easily
from the following proposition, which elucidates the behavior of A0 with respect to the one-
parameter group (κt), with κt = σtτ−t. It will be decisive in obtaining some structural
properties of ∗-algebraic quantum groups, as we will show in the third section.

Proposition 2.3. A0 ⊆ D(κz) for all z ∈ C, and κz(A0) ⊆ A0. Here κz denotes the
analytic continuation of the one-parameter group (κt) to the point z ∈ C, and D(κz) denotes
its domain.

Proof. Let b be a fixed element of A0. Choose a non-zero a ∈ A0, and write

a⊗ b =

n∑
i=1

∆(pi)(1⊗ qi),

with pi, qi ∈ A0. Using the commutation relations between ∆, (τt), (σt) and (σ′t), we get
that

κ−t(a)⊗ ρt(b) =
∑

∆(pi)(1⊗ ρt(qi)) for all t ∈ R,

where ρt = σ′tτt. Choose c ∈ A0 such that cb 6= 0, and multiply this equation to the left with
1⊗ c to get

κ−t(a)⊗ cρt(b) =
∑

((1⊗ c)∆(pi))(1⊗ ρt(qi)).

Choose aij , bij ∈ A0 such that

(1⊗ c)∆(pi) =

mi∑
j=1

aij ⊗ bij ,

and let L be the finite-dimensional space spanned by the aij . We see that κ−t(a)⊗ cρt(b) ∈
L ⊗M , for every t ∈ R. Since cρ0(b) = cb 6= 0 and ρt is strongly continuous, we get that
there exists a δ > 0 such that cρt(b) 6= 0 for all t with |t| < δ. This means κt(a) ∈ L for all
|t| < δ.

For every ε > 0, let Kε = span{κt(a) | |t| < ε}, and nε = dim(Kε). For small ε, we have
nε ∈ N. Choose an ε > 0 where this dimension reaches a minimum. Then K := Kε = Kε/2

will be a finite-dimensional space containing a, invariant under κt for all t ∈ R.

Now (κt) induces a continuous homomorphism κ̃ : R → GL(K). It is then well-known that
it must necessarily be analytic (see e.g. [6]). Hence for any ω ∈ M∗, the map t → ω(κt(a))
is analytic. Thus a ∈ D(κz) for any z ∈ C, and κz(a) ∈ K ⊆ A0. This concludes the proof.

Remark: The lemma remains true if we replace κt by ρt = τtσ
′
t or σtσ

′
t.

Corollary 2.4. A0 consists of analytic elements for (σt).
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Proof. This follows easily from the previous two statements. If a ∈ A0, we know that a is
analytic for τt and κt = σtτ−t. If z ∈ C, then τz(κz(a)) makes sense, since A0 is invariant
under κz. Since σz is the closure of τz◦κz (a fact for which we have found no concrete reference
in the von Neumann algebra case, but which is true here anyway because A0 ⊆ M(A), so
that we can use the Proposition 3.11. of [8]), we arrive at a ∈ D(σz).

As a consequence, A0 is invariant under σni and σ′ni, with n ∈ Z.

Remark. We do not know if A0, or even the von Neumann-algebra N generated by it, has to
be invariant under the one-parameter groups (σt) and (τt). There seems to be an analytic
obstruction to be able to conclude this. It is however easy to see that if N is invariant under
either (σt), (τt) or δ−it · δit, then it is invariant under all of them (see e.g. Proposition 2.9).
That this is an important problem, is shown by the following: suppose that A0 is a multiplier
Hopf ∗-algebra and that N contains the unit of M . Then ∆(N) ⊆ N ⊗ N , and invariance
under τt and R would give, by Proposition 10.5. of [1], that N is in fact itself a von Neumann
algebraic quantum group (possibly with a different left invariant weight). Thus this would
show that such multiplier Hopf ∗-algebras are intimately related to von Neumann algebraic
quantum groups.

Next, we impose a stronger condition on A0:

Assumption: A0 ⊆ A.

We will say then that A0 has a proper imbedding in A. Because A0 is now a subspace of the
C∗-algebra A, we can say more about its connection to ϕ. We first need a simple lemma,
which also appears in some form in [14]:

Lemma 2.5. Suppose that a ∈ A ∩D(σi/2) and e ∈ A satisfy ea = a. Then a ∈ Nϕ.

Proof. Choose c in A ∩M +
ϕ such that ‖c− e∗e‖ ≤ 1/2. This is possible because M +

ϕ ∩A is
normdense in A+. Then

1

2
a∗a ≤ a∗(1 + c− e∗e)a

= a∗ca.

Since a ∈ D(σi/2), we know that a∗ca ∈ M +
ϕ by a fundamental result in non-commutative

integration theory. Thus a∗a ∈ M +
ϕ , since it is bounded from above by an integrable

element.

Proposition 2.6. A0 belongs to the Tomita algebra of ϕ: A0 ⊆ Tϕ = {x ∈ Nϕ ∩N ∗
ϕ | x ∈

D(σz) and σz(x) ∈ Nϕ ∩N ∗
ϕ for all z ∈ C}.

Proof. We know that A0 has local units: for every a ∈ A0 there exist e, f ∈ A0 such that
a = ea and a = af . So, since A0 consists of analytic elements for (σt), we can apply the
previous lemma to each element of (

⋃
z∈C σz(A0)) and A∗0, since also for each of these we

can supply local units. This implies that A0 ⊆ Tϕ.

Remark: A converse is also true. Suppose A0 consists of square integrable elements in M .
Then A0 will be a subset of A. Namely: let b be a fixed element in A0 such that ϕ(b∗b) = 1.
Choose a in A0. Then a ⊗ b =

∑
∆(qi)(pi ⊗ 1) with pi, qi ∈ A0. Multiply to the left with

1⊗ b∗ and apply ι⊗ϕ, then a =
∑

(ι⊗〈·Λϕ(qi),Λϕ(b)〉)(W ∗)pi. Since A0 ⊆M(A) and each
(ι⊗ ωΛϕ(qi),Λϕ(b)

(W ∗) ∈ A, this is an element of A.

The previous proposition has the interesting corollary that the scaling constant of A is
necessarily trivial. We will come back to this fact in the third section, where we apply our
techniques to ∗-algebraic quantum groups (see Theorem 3.4).

Corollary 2.7. The scaling constant ν of (A,∆) equals 1.
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Proof. We have that ν−
1
2 tκt, where κt = σt ◦ τ−t, induces a one-parameter unitary group

ut on H by the formula utΛϕ(x) = ν−
1
2 tΛϕ(κt(x)) for x ∈ Nϕ. As in the proof of lemma

2.3, there is a non-trivial finite-dimensional subspace K of A0 that is invariant under (κt).
Therefore the space L = Λϕ(K) is invariant under (ut). This means that there exists a
non-zero x ∈ A0 such that ξ = Λϕ(x) ∈ L and utξ = eitλξ, for some λ ∈ R. Hence

ν−
1
2 tκt(x) = eitλx. But, since κt is a one-parameter group of ∗-automorphisms, we get

‖x‖ = ‖κt(x)‖
= ‖eitλν 1

2 tx‖
= ν

1
2 t‖x‖.

So ν = 1.

From the previous proposition, it follows that A0 ⊆ Nϕ ∩N ∗
ϕ . Because A2

0 = A0, we also
have A0 ⊆ Mϕ, so every element of A0 is integrable with respect to ϕ. However, we can
not conclude that (A0,∆0) is an algebraic quantum group, because we do not know if the
restriction ϕ0 of ϕ to A0 is non-zero. In any case, it will be left invariant: If a, b ∈ A0, then
∆(a)(b⊗ 1) ∈Mι⊗ϕ, and

(ι⊗ ϕ0)(∆0(a)(b⊗ 1)) = (ι⊗ ϕ)(∆(a)(b⊗ 1))

= ϕ(a)b

= ϕ0(a)b.

Assumption: A0 ⊆ A and ϕ|A0
6= 0.

The assumption is sufficient to conclude that (A0,∆0) is an algebraic quantum group, as
we have shown. Remark that the second condition is automatically fulfilled if (A0,∆0) is a
multiplier Hopf ∗-algebra (with the same ∗-involution as in A).

We now show that A0 itself possesses an analytic structure, thus generalizing the results in
[9].

Proposition 2.8. Let δ be the modular element of (A,∆), and δ0 the modular element of
(A0,∆0). Then every a in A0 is a left and a right multiplier for δ such that aδ = aδ0 and
δa = δ0a. Moreover, we have that δzA0 = A0 and A0δ

z = A0.

Proof. Choose a fixed b in A0 with ϕ(b) 6= 0. Choose a in A0. Then a⊗ b =
∑

∆(pi)(qi⊗ 1)
for certain pi, qi in A0. Multiplying to the left with δit ⊗ δit, we get that

δita⊗ δitb =
∑

∆(δitpi)(qi ⊗ 1).

Now for any c ∈ A0, we have that δitc will be in Mϕ. Namely, choose e ∈ A0 with ce = c.
Then d = c∗δ−it will be in A ∩D(σi/2), and e∗d = d. Hence by Lemma 2.5, d ∈ Nϕ and so
δitc = δitce ∈ N ∗

ϕ Nϕ = Mϕ. So in particular, we can apply ι⊗ ϕ to each side of the above
equation, and we get

ϕ(δitb)δita =
∑

ϕ(δitpi)qi ∈ A0.

Denote by L the finite-dimensional vectorspace spanned by the qi. Since t → ϕ(δitb) is a
continuous function and ϕ(b) = 1, we can choose t small such that ϕ(δitb) 6= 0. For such t we
have δita ∈ L. A similar argument as in Proposition 2.3 lets us conclude that the linear span
of the δita with t ∈ R is a finite-dimensional subspace of A0. This easily implies that a is a
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right multiplier of δ and δa ∈ A0, since t → δita has an analytic extension to the complex
plane. So every element of A0 lies in the domain of left multiplication with any δz, z ∈ C,
and also δzA0 = A0. Since the space B0 = {a ∈ A | a∗ ∈ A0} also has the structure of a
multiplier Hopf algebra, and ϕ|B0

6= 0, we can conclude that B0 consists of right multipliers
for δ. So A0 consists of left multipliers for δ, and A0δ

z = A0.

Choose a fixed a ∈ A0 with ϕ(a) 6= 0. Let b, c be elements in A0. By the Result 7.6. of [11],
we know that

ϕ((ι⊗ 〈·Λϕ(b),Λϕ(c∗)〉)∆(a)) = ϕ(a)〈δ1/2Λϕ(b), δ1/2Λϕ(c∗)〉
= ϕ(a)〈Λϕ(b),Λϕ(δc∗)〉
= ϕ0(a)ϕ0(cδb).

On the other hand,

ϕ((ι⊗ 〈·Λϕ(b),Λϕ(c∗)〉)∆(a)) = (ϕ⊗ ϕ)((1⊗ c)∆(a)(1⊗ b))
= (ϕ0 ⊗ ϕ0)((1⊗ c)∆0(a)(1⊗ b))
= ϕ0(a)ϕ0(cδ0b).

Since ϕ0 is faithful, δ0b = δb and bδ0 = bδ for all b ∈ A0.

Remark: In general (i.e. when A0 ⊆ M(A)), we do not have to expect nice behavior of A0

with respect to δ. Consider for example the trivial quantum group C1 in M(A).

As we have remarked, the invariance under the one-parameter groups of A0 follows easily.

Proposition 2.9. τz(A0) = σz(A0) = R(A0) = A0, for all z ∈ C.

Proof. We have σ2z(a) = δ−iz(σ′zσz(a))δiz. But σ′zσz and δ−iz ·δiz leave A0 invariant. Hence
σz(A0) ⊆ A0. Then also τz = (τzσ−z) ◦ σz leaves A0 invariant. Since R = S ◦ τi/2, we have
that R leaves A0 invariant.

Gathering all we have proven so far, we obtain the following theorem:

Theorem 2.10. Let (A,∆) be a reduced C∗-algebraic quantum group with left invariant
weight ϕ. Let (A0,∆0) be a regular multiplier Hopf algebra in A, such that

∆0(a)(1⊗ b) = ∆(a)(1⊗ b),

∆0(a)(b⊗ 1) = ∆(a)(b⊗ 1),

(a⊗ 1)∆0(b) = (a⊗ 1)∆(b),

(1⊗ a)∆0(b) = (1⊗ a)∆(b),

for all a, b ∈ A0. Then A0 will consist of integrable elements for ϕ. If ϕ|A0
6= 0, then (A0,∆0)

will be an algebraic quantum group with left invariant functional ϕ0 = ϕ|A0
. Moreover, A0

will consist of analytic elements for the modular automorphism group, the scaling group, the
unitary antipode and left and right multiplication with the modular element of (A,∆). A0 will
be invariant under all these actions. Then further σ−i restricts to the modular automorphism
σ for ϕ0, τ−i restricts to S2

0 , and δ, considered as a multiplier for A0, will coincide with δ0.
In particular, ψ will restrict to a right invariant functional ψ0 on A0.

As a corollary, we have

Corollary 2.11. Let (A,∆) be a reduced C∗-algebraic quantum group with a dense, properly
imbedded regular multiplier Hopf ∗-algebra (A0,∆0). Then (A0,∆0) is a ∗-algebraic quantum
group, with associated C∗-algebraic quantum group (A,∆).
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Proof. From the foregoing, we know that (A0,∆0) is a ∗-algebraic quantum group with
left Haar functional ϕ0 = ϕ|A0

. The only difficult step left to show, is that A0 is actually
a core for the GNS-map Λϕ. The proof of this follows along the lines of Theorem 6.12. of [13].

Let Λ0 be the closure of the restriction of Λϕ to A0. Choose a bounded net (ej) in A0

converging strictly to 1. We can replace ej by 1√
π

∫
exp(−t2)σt(ej)dt, since each will be an

element of A0 (because {σt(ej) | t ∈ R} only spans a finite-dimensional space in A0), and
the net will still be bounded, converging strictly to 1. Moreover, now also σi/2(ej) will be a
bounded net, converging strictly to 1.

Let x be an element of Nϕ. Then xej → x in norm. Moreover, Λϕ(xej) = Jσi/2(ej)
∗JΛϕ(x).

Because σi/2(ej) also converges ∗-strongly to 1, we have Λϕ(xej) → Λϕ(x). Now if x is the
norm-limit of (ai), with ai ∈ A0, then Λ0(aiej) = aiΛϕ(ej) → xΛϕ(ej) = Λϕ(xej) for each
ej . Since Λ0 is closed, each xej and hence x is in the domain of Λ0. So Λ0 = Λϕ, and A0 is
a core for Λϕ.

The corollary follows, since the multiplicative unitary of A and the multiplicative unitary of
A0 on Hϕ⊗Hϕ = Hϕ0 ⊗Hϕ0 coincide, and their first leg constitute respectively A and the
C∗-algebraic quantum group associated to A0.

In our last proposition we will say something about the dual of (A0,∆0) when A0 ⊆ A is a
properly imbedded regular multiplier Hopf algebra with ϕ|A0

6= 0.

Proposition 2.12. Let (Â, ∆̂) be the dual locally compact quantum group of (A,∆), and let

(Â0, ∆̂0) be the dual algebraic quantum group of (A0,∆0). Then

j : Â0 → Â : ϕ0(· a)→ (ϕ(· a)⊗ ι)(W )

is an injective (∗-)algebra homomorphism, such that

(j ⊗ j)(∆̂op
0 (ω1)(1⊗ ω2)) = ∆̂(j(ω1))(1⊗ j(ω2)),

(j ⊗ j)((ω1 ⊗ 1)∆̂op
0 (ω2)) = (j(ω2)⊗ 1)∆̂(j(ω1)),

(j ⊗ j)(∆̂op
0 (ω1)(ω2 ⊗ 1)) = ∆̂(j(ω1))(j(ω2)⊗ 1),

(j ⊗ j)((1⊗ ω1)∆̂op
0 (ω2)) = (1⊗ j(ω1))∆̂(j(ω2)),

for all ω1, ω2 ∈ Â0.

Proof. Remark that by ∆̂op
0 we mean the comultiplication on the dual space Â determined

by (∆̂op
0 (ω))(x⊗y) = ω(yx). The only reason why it appears is by a difference in convention

about the dual for algebraic quantum groups and locally compact quantum groups.

Recall that W denotes the multiplicative unitary of the left regular representation. Remark
that the expression

(ϕ(· a)⊗ ι)(W )

makes sense, since a is in the square of the Tomita algebra, hence ϕ(·a) has weak∗-continuous
extension from Nϕ to M . It is also easily seen that j is injective.

We first check that j preserves the ∗-operation, in case A0 is a ∗-algebraic quantum group.
First remark that if ω ∈M∗ is such that ω ◦ S−1 is bounded on D(S−1), then by definition
of the antipode, (ω⊗ ι)(W )∗ = (ω∗⊗ ι)(W ) where ω∗ is the closure of x→ ω(S−1(x∗)) with
x ∈ D(S). But if we denote by ωa the functional ϕ(·a), then ωa satisfies this condition, since
for x ∈ D(S−1), we have, using that the scaling constant of A equals 1 and that thus ϕ is
τt-invariant,

ωa(S−1(x)) = ϕ(S−1(x)a)

= ϕ(R(x)τ−i/2(a)),
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so ωa ◦ S−1 is bounded. So we are left to prove that j(ϕ(·a)∗) = ω∗a. But for x ∈M with x
a right multiplier of δ1/2, we have, again using that the scaling constant equals 1,

ω∗a(x) = ϕ(τ−i/2(a)∗R(x))

= ϕ(δ1/2xS(a)∗δ1/2)

= ϕ(xS(a)∗δ),

and so, because such x are σ-weakly dense in M , we get, since ϕ0(·a)∗ = ϕ0(·S0(a)∗δ0), that
j preserves the ∗-operation.

Now we show that j is an algebra morphism. Choose a, b ∈ A0. Choose pi, qi in A0 such that
a⊗ b =

∑
∆0(pi)(qi⊗1). Then ϕ0(·a) ·ϕ0(·b) =

∑
ϕ(qi)ϕ0(·pi). Now as for ω1, ω2 ∈M∗, we

have (ω1⊗ ι)(W )(ω2⊗ ι)(W ) = (ω1 ·ω2⊗ ι)(W ), where ω1 ·ω2 = (ω1⊗ω2) ◦∆, we only have
to check if ϕ(·a) · ϕ(·b) equals

∑
ϕ(qi)ϕ(·pi). But evaluating this last functional in x ∈ M ,

we get (ϕ ⊗ ϕ)(∆(x)(a ⊗ b)), which equals
∑

(ϕ ⊗ ϕ)(∆(xpi)(qi ⊗ 1)) =
∑
ϕ(qi)ϕ(xpi), so

indeed both functionals are equal.

Now we show that j flips the comultiplication. Denoting â = j(ϕ0(·a)) for a ∈ A0, we have

(Λϕ̂ ⊗ Λϕ̂)(∆̂(b̂)(â⊗ 1)) = ΣWΣ(Λϕ̂(â)⊗ Λϕ̂(b̂))

= ΣWΣ(Λϕ(a)⊗ Λϕ(b)),

with Σ denoting the flip. Writing b⊗ a as
∑

∆(pi)(qi ⊗ 1) with pi, qi ∈ A0, this reduces to∑
Λϕ(pi) ⊗ Λϕ(qi). As ∆̂op

0 (ϕ0(·b))(ϕ0(·a) ⊗ 1) =
∑
ϕ0(·pi) ⊗ ϕ(·qi), we have proven the

third equation of the proposition. The other equations can be proven in a similar way (by
using the appropriate representation).

Remark: The previous proposition says, that the dual Â0 will be properly imbedded in Â if
A0 is properly imbedded in (A,∆). This implies that, under the given conditions, also the

dual Â0 of A0 will have an analytic structure.

3 Structure of ∗-algebraic quantum groups

We apply the techniques of the above section to obtain some interesting structural properties
of ∗-algebraic quantum groups. While many of the results follow easily from the previous
section, we have decided to give new proofs, using only algebraic machinery. As such, we
can give a purely algebraic proof of the existence of a positive right invariant functional on
a ∗-algebraic quantum group.

We fix a ∗-algebraic quantum group (A,∆) with antipode S, positive left invariant functional
ϕ, modular automorphism σ and modular element δ. As a right invariant functional (not
assumed to be positive) we take ψ = ϕ ◦ S, with modular automorphism σ′. We adapt the
proof of Lemma 2.1 to show that A is spanned by eigenvectors for κ = σ−1S2. We need an
easy lemma.

Lemma 3.1. If b is a non-zero element in A and n is an even integer, then b∗((σ′)nS2n)(b) 6=
0.

Proof. Suppose that b ∈ A and n ∈ 2Z are such that

b∗((σ′)nS2n(b)) = 0.

Then
((σ′)n/2Sn(b))∗((σ′)n/2Sn(b)) = 0.

So (σ′)n/2Sn(b) = 0, hence b = 0.
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Lemma 3.2. If a ∈ A, then the linear span of the κn(a), with n ∈ Z, is finite-dimensional.

Proof. We can follow the proof as in lemma 2.1:

Let b be a fixed element of A. Choose a non-zero a ∈ A, and write

a⊗ b =

n∑
i=1

∆(pi)(1⊗ qi),

with pi, qi ∈ A. Then

κn(a)⊗ ρ−n(b) =
∑

∆(pi)(1⊗ ρ−n(qi)), for all n ∈ Z,

where ρ = σ′S2. Multiply this equation to the left with 1⊗ b∗ to get

κn(a)⊗ b∗ρ−n(b) =
∑

((1⊗ b∗)∆(pi))(1⊗ ρ−n(qi)).

Choose aij , bij ∈ A such that

(1⊗ b∗)∆(pi) =

mi∑
j=1

aij ⊗ bij ,

and let L be the finite-dimensional space spanned by the aij . We see that κn(a)⊗b∗ρ−n(b) ∈
L ⊗ A, for every n ∈ Z. Using the previous lemma, we can conclude that κn(a) ∈ L for
all n ∈ 2Z. But this easily implies that the linear span K of all κn(a), with n ∈ Z, is a
finite-dimensional, κ-invariant linear subspace of A.

Denote by (Â, ∆̂) the dual ∗-algebraic quantum group of (A,∆). We can regard Â and M(Â)

as functionals on A. We know from [9] that δ̂ = ε ◦ κ, which is proven in an algebraic (and
more general) setting in [4]. Then

〈ωδ̂, x〉 = 〈ω ⊗ (εκ),∆(x)〉
= 〈ω, κ(x)〉,

for each ω ∈ Â and x ∈ A. If ω is of the form ϕ(·a), this means ϕ(·a)δ̂ is a scalar multiple

of ϕ(·κ−1(a)). This implies that for ω fixed, the linear span of the ωδ̂n is finite-dimensional.

The same is of course true for left multiplication with δ̂.

By duality, we conclude that for each a in A, the linear span of the δna is a finite-dimensional
space K. (We could also prove this along the lines of Proposition 2.8.) Since δ is a self-adjoint
operator on K, with Hilbert space structure induced by ϕ, we can diagonalize δ. Hence we
arrive at

Proposition 3.3. Let (A,∆) be a ∗-algebraic quantum group. Then A is spanned by elements
which are eigenvectors for left multiplication by δ.

We can use this to settle an open question (cf. [13]):

Theorem 3.4. Let (A,∆) be a ∗-algebraic quantum group. Then the scaling constant µ
equals 1.

Proof. Choose a non-zero element b ∈ A with δb = λb, for some λ ∈ R0. Then ϕ(bb∗δ) =
λϕ(bb∗). But the left hand side equals µϕ(δbb∗) = µλϕ(bb∗). Since ϕ(bb∗) 6= 0, we arrive at
µ = 1.

Proposition 3.3 can be strengthened:
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Theorem 3.5. Let (A,∆) be a ∗-algebraic quantum group. Then A is spanned by elements
which are simultaneously eigenvectors for S2, σ and σ′, and left and right multiplication by
δ. Moreover, the eigenvalues of these actions are all positive.

Proof. We know that A is spanned by eigenvectors for left multiplication with δ, and the
same is easily seen to be true for κ and ρ = σ′S2. But all these actions commute. Hence
we can find a basis of A consisting of simultaneous eigenvectors. Since σ, σ′ and S2 can be
written as compositions of the maps κ, ρ and left and right multiplication with δ, the first
part of the theorem is proven.

We show that left multiplication with δ has positive eigenvalues. Fix a ∈ A0. If λ is an
eigenvalue, choose an eigenvector b. Consider x = ∆(a)(1 ⊗ b). Then (ϕ ⊗ ϕ)(x∗x) will be
a positive number. But this is equal to ϕ(a∗a)ϕ(b∗δb) = λϕ(a∗a)ϕ(b∗b). Hence λ must be
positive. As before, duality implies that κ and ρ have positive eigenvalues, hence the same
is true of σ, σ′ and S2.

With a little more effort, this result can be shown to hold true also for the ∗-algebraic quan-
tum hypergroups, introduced in [4].

This theorem explains why there exists an analytic structure on a ∗-algebraic quantum group
(A,∆): the actions are all diagonal with positive entries. Hence σz, σ

′
z, τz and multiplication

with δiz are all well-defined on A.

We can also see that ψ = ϕ ◦ S is already a positive right invariant functional, since
ψ(a∗a) = ϕ(a∗aδ) = ϕ((aδ1/2)∗aδ1/2) ≥ 0. Here we use that σ(δ1/2) = δ1/2, which is
easily proven using an eigenvector argument.

Finally remark that the extension of ϕ to M , with M the von Neumann algebraic quan-
tum group associated with A, is an almost periodic weight, since the modular operator ∇
implementing σ on Hϕ is diagonizable.

4 Special cases

Compact and discrete quantum groups

Let (A,∆) be a discrete locally compact quantum group (see e.g. [25]). Then A is the C∗-
algebraic direct sum of matrix algebras Mnα(C). The algebraic direct sum A = ⊕αMnα(C)
has the structure of a multiplier Hopf ∗-algebra. So it is easy to see that δ, being a positive
element in

∏
Mnα , is diagonizable with respect to A . Then the same will be true for S2,

the square of the antipode, since in a discrete quantum group we have S2(a) = δ−1/2aδ1/2.
Lastly, σ is diagonizable since σ = S2 in a discrete quantum group.

Suppose now that (A0,∆0) is a ∗-algebraic quantum group, properly imbedded in (A,∆).
Suppose a is a non-zero element in A0 such that a /∈ A . We know that A0 has local units,
so there exists e ∈ A0 with ae = a. Then aee∗a∗ = aa∗, and this implies that infinitely
many components of ee∗ have norm greater than 1. But this is impossible, since ee∗ ∈ A.
So A0 ⊆ A .

The same argument implies that A0 is again a ∗-algebraic quantum group of discrete type,
since A0 itself will be an algebraic direct sum of matrix algebras. In particular, A0 has
a co-integral h0, which will be a grouplike projection in A . (A grouplike projection in a
∗-algebraic quantum group is a (self-adjoint) projection p satisying ∆(p)(1⊗ p) = p⊗ p. See
[15] for more details.)

The dual side is also easy to treat. Namely, let (A,∆) be a (reduced) compact locally compact
quantum group. We know then that A contains a dense Hopf ∗-algebra A . Suppose that
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(A0,∆0) is a multiplier Hopf ∗-algebra imbedded in (A,∆). Since the left invariant weight ϕ
is everywhere defined, the elements of A0 are automatically integrable. Then (A0,∆0) will

be a ∗-algebraic quantum group. We know that Â0 is a discrete quantum group properly
imbedded in Â. Hence A0 ⊆ A and (A0,∆0) is a ∗-algebraic quantum group of compact type
(i.e. a ∗-algebraic quantum group with unit). Note that we could also have used Theorem 5.1
of [2], by considering the Hopf algebra generated by A and A0. The dual p of the co-integral

h0 of Â0 in Â will be a grouplike projection in A . It will be a unit for A0.

Locally compact groups

Suppose G is a locally compact group. Let (A0,∆0) be a regular multiplier Hopf ∗-algebra
imbedded in (L∞(G),∆), where ∆ is the usual comultiplication determined by ∆(f)(g, h) =
f(gh). Then A0 ⊆ M(C0(G)) = Cb(G), so A0 consists of bounded continuous functions on
G. Let Ā0 be the normclosure of A0 in L∞(G). Then ∆ restricts to a ∗-algebra morphism
Ā0 →M(Ā0 ⊗ Ā0). Since Ā0 is abelian, this induces a locally compact semigroup structure
on the spectrum X of Ā0. Since S is now just an involutive ∗-morphism L∞(G)→ L∞(G),
coinciding with S0 on A0, it restricts to a ∗-morphism S : Ā0 → Ā0. This induces a con-
tinuous map X → X : x → x̄. Using the fact that m((S0 ⊗ ι)(∆(f)(1 ⊗ g))) = ε(f)g for
f, g ∈ A0, we see that f(x̄x)g(x) = ε(f)g(x) for all f, g ∈ A0. Since A0 separates points,
ε(f) = f(x̄x) for all f ∈ A0 and x ∈ X, so that there exists e ∈ X with xx = e for all
x ∈ X. Now e is easily seen to be a unit for the semigroup X, and x̄ will be an inverse for
x. This makes X a locally compact group. But this means that X has a Haar measure. So
(A0,∆0) is properly imbedded in the C∗-algebraic quantum group (C0(X),∆), hence is itself
a ∗-algebraic quantum group.

Remark however that the invariant functional on A0 can be different from integration with
respect to the Haar measure on G. Consider for example the linear span A0 of the functions
fx : t→ eitx in L∞(R), with x ∈ R. Then A0 is a Hopf ∗-algebra, but none of its non-zero
elements are integrable with respect to the Lebesgue measure. It is easy to see that the
left invariant functional ϕ0 on A0 is given by ϕ0(fx) = δx,0, and that the space X equals
the Bohr compactification of R (i.e. the dual of R with the discrete topology), ϕ0 being
integration with respect to its Haar measure.

The dual case is not so clear: suppose G is a locally compact group, and (A0,∆0) is imbed-
ded in (L (G),∆), where ∆ is determined by ∆(ug) = ug ⊗ ug on the generators of L (G).
Will the C∗-algebraic closure Ā0 with the restriction of ∆ be of the form (C∗(X),∆) for
some locally compact group X? This will of course be true if A0 is properly imbedded in
C∗r (G), since then we can apply the theory of the second section to conclude that Ā0 is a
cocommutative C∗-algebraic quantum group, hence of the form (C∗r (X),∆).

Let us now look at the results of the third section in the commutative case. Let G be a locally
compact group with a compact open subgroup H. Consider the regular functions on H - i.e.
the functions generated by the matrix-coefficients of finite-dimensional representations of H.
We can see them as functions on G. The linear span of left translates of these functions by
elements of G is denoted by P0(G). In [14], it is shown that P0(G) forms a dense multiplier
Hopf∗-algebra inside (C0(G),∆), with the usual comultiplication, and that every commuta-
tive ∗-algebraic quantum group is of this form. In this setting, the only non-trivial object is
the modular function δ. According to our results, it should be diagonizable. This is easily
seen to be true. For example, the characteristic function of H will be an eigenvector for left
multiplication. Indeed: the Haar measure on H is the restriction of the Haar measure on
G. Hence δ|H is the modular function of H. Since H is compact, δ|H = 1. So every regular
function on H is invariant for left multiplication. Then the translates by some element g
of such functions will be eigenvectors with eigenvalue δ(g), and the linear span of all such
translates equals P0(G).
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The case of the quantum groups Uq(su(2)) and SUq(2)

Finally, we consider a particular, non-trivial example of a Hopf ∗-algebra (A0,∆0), imbed-
ded in the multiplier algebra of a discrete ∗-algebraic quantum group (A ,∆). This is not
a situation we have discussed, since this multiplier algebra contains unbounded operators
(when acting on the Hilbert space closure of A by left multiplication). We will see which of
our results are still true in this case.

So as (A0,∆0), we take the quantum enveloping Lie algebra Uq(su(2)), with q nonzero in
] − 1, 1[. It is the unital ∗-algebra generated by two elements E and K, with K invertible
and self-adjoint, obeying the following commutation relations:{

EK = q−1KE
[E,E∗] = 1

q−q−1 (K2 −K−2).

The comultiplication on the generators is given by{
∆0(K) = K ⊗K
∆0(E) = E ⊗K +K−1 ⊗ E.

To see that this comultiplication is well-defined, it is enough to check that it respects the
commutation relations, but this is easily done. The antipode is determined by{

S0(K) = K−1

S0(E) = −qE.

As our ∗-algebraic quantum group (A ,∆), we take the ∗-algebraic quantum group B̂, where
B is the compact ∗-algebraic quantum group associated with SUq(2), Woronowicz’ twisted
SU(2)-group. We have that B is the unital ∗-algebra generated by two elements a and b,
such that 

ab = qba
ab∗ = qb∗a
[b, b∗] = 0
a∗a = 1− q−2b∗b
aa∗ = 1− b∗b.

The comultiplication ∆̂ is given by:{
∆̂(a) = a⊗ a− q−1b⊗ b∗
∆̂(b) = a⊗ b+ b⊗ a∗.

The antipode Ŝ is given by 
Ŝ(a) = a∗

Ŝ(a∗) = a

Ŝ(b) = −q−1b.

We will not need the concrete description of the left invariant functional, but we need to
know the modular group, which we now denote by (ρt). To be complete, we also provide the
scaling group, which we will denote by (θt):{

ρz(a) = q−2iza
ρz(b) = b

{
θz(a) = a
θz(b) = q−2izb.

The modular element will of course be trivial, since the quantum group is compact.

The easiest way to see that A0 can be imbedded in M(B̂), is by creating a pairing between
B and A0 (for the notion of a pairing, see e.g. section 4 of [26]). For, since B is compact, it

is known that M(B̂) can be identified with the vector space of all linear functionals on B
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(see e.g. the remark after Proposition 4.2 of [21]). The fact that there is a pairing, implies

that the inclusion of A0 in M(B̂) will be a morphism. The concrete pairing is as follows:
〈K, a〉 = q−1/2

〈K, a∗〉 = q1/2

〈K, b〉 = 0
〈K, b∗〉 = 0


〈E, a〉 = 0
〈E, a∗〉 = 0.
〈E, b〉 = 0
〈E, b∗〉 = −q.

Since on the dual of a compact algebraic quantum group the modular group (σt) and the
scaling group (τt) coincide, we find the following behavior of A0:{

σz(K) = τz(K) = K
σz(E) = τz(E) = q2izE.

But although there is general invariance under the scaling (and thus the modular) group,
we no longer have that A0 is invariant under left multiplication by δz, with δ the modular
element of B̂. For this would imply that actually δz ∈ A0, since A0 is a Hopf algebra.
Remark that this δz is easily computable, for it is given as a functional by ε ◦ ρiz, with ε
the co-unit of B. We find that applying δ is the same as pairing with K−4 = (K∗K)−2,
so uniqueness gives us that δit = K−4it. It is clear that this is no element in A0. Remark
also, that right or left multiplication with δ is no longer diagonal. This is easy to see, using
that A0 has {KlEmFn | l ∈ Z,m, n ∈ N} as a basis. In fact, since span{K4nX} has infinite

dimension for any X ∈ A0, we get that A0 ∩ B̂ = {0}.

We note that in this example we are in a special situation: (ŜUq(2), ∆̂) is the C∗-algebraic
quantum group generated by K, K−1 and E, in the sense of Woronowicz. Moreover, the
multiplier Hopf ∗-subalgebra is linked by a pairing to a ∗-algebraic quantum group. This
could explain why we still have invariance under τt and σt. For example, the same type of
behavior occurs with the quantum az+b-group. Remark that in these cases, the correspond-
ing Hopf ∗-algebra can be viewed as the infinitesimal version of the quantum group. We do
not know if it is a general fact that the one-parameter groups descend to the Hopf ∗-algebra
associated with the quantum group, if such an object is present. In any case, the connection
between a locally compact quantum group and a Hopf ∗-algebra representing the quantum
group at an infinitesimal level, is at present not well understood in a general framework.
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